

EE2 Group Project

FINAL REPORT

SortBot: Self-sorting Recycling Machine

Group 06

Group members:

Boskovic, Katarina (01064898)

Carrani, Jacopo (00944928)

Lee, Sze Tyng (01045611)

Liew, Guo Liang (01051242)

Lu Chen, Wendy (01069203)

Mathivanan, Abhinaya (01115427)

Rosu, Octavian (01061112)

Supervisor:

Dr Cong Ling

Submission date:

13.03.2017.

2

Table of Contents
1. Abstract .. 4

2. Introduction ... 5

3. Design Criteria .. 6

3.1 Problem Research .. 6

3.2 Design Specifications ... 6

4. Design Consideration and Implementation ... 7

4.1 Design Overview .. 7

4.2 Rotating Mechanism .. 7

4.3 Motor Configuration .. 8

4.3.1 Servo Motor .. 8

4.3.2 Servo Motor with Continuous Rotation .. 8

4.3.3 Rotation of the tray ... 8

4.3.4 Tilting of the tray ... 9

4.3.5 Circuit Diagram ... 11

4.4 Image Recognition ... 14

4.4.1 Image Recognition Design Selection ... 14

4.4.2 Image Recognition Concept Development ... 15

4.4.3 Image Recognition Design Challenges .. 16

4.4.4 Program Implementation ... 18

4.5 The Mobile App .. 19

4.5.1 Rationale for Decisions ... 19

4.6 Rationale for Decisions .. 20

5. Industrial Design and Manufacturing Considerations ... 21

6. Project Management ... 22

7. Future Work ... 23

8. Conclusion .. 23

References ... 24

Appendix .. 26

Appendix 1 – Results of the primary research carried out among students 26

Appendix 2 – Code for Controlling Motors .. 28

Appendix 3 – Image Recognition Code .. 29

3

Appendix 4 – Authentication of Google Cloud Vision API ... 31

Appendix 5 – An Example Usage of Image Recognition Software....................................... 32

4

1. Abstract

This project aims to tackle the issue of waste management in universities as current models

of manual sorting of recyclables are tedious, time-consuming and discourage students from

recycling more regularly. Market analysis and primary research in the form of surveying

Imperial students was conducted. The technical solution proposed addresses this problem

with a self-sorting recycling system, SortBot, that includes a sorting machine on site and a

complementing mobile application that rewards recycling transactions. Technical aspect of

SortBot was refined both in terms of software and hardware to have a intelligent image

recognition system and a robust rotating mechanism that identifies objects and places them

into correct compartments.

5

2. Introduction

This project addresses the large scope for improvement in the process of recycling both for the
consumers as well as waste management authorities and companies. For the purpose of this project,
the main target has been narrowed to focus on recycling in campuses. As discussed in the interim
report, current methods employed in waste management include collecting all recyclables in the
“Dry Mixed Recycling” bins and sorting them in the “Material Sorting Facilities”. The problems
associated with this are mainly dissuasion from recycling especially among students and
contamination of recyclables.

1) Low rates of recycling among students

Due to budget cuts to authorities in charge of recycling and people still being confused about how to
sort materials ‘recycling rates have fallen in 2016 for the first time’ (The Guardian, 2016).

As students are half as likely to recycle compared to anyone else in the UK (SITA UK, 2016) the
project aims to give incentives to students to recycle more as primary research showed that 50% of
Imperial students do not recycle on regular basis1. This is achieved by rewarding students every time
they recycle achieving a social and environmental “win-win” system as 3 in 4 Imperial students said
they would recycle more if there was a rewarding system2. Students will receive points they can later
use for on campus purchases whereas the recycling process will be made easier and more economic
by making the material recovery facilities redundant as the sorting of the materials will done on site.

2) Contamination of recyclables

The other problem that the project aims to overcome is the issue of contamination of recyclables as
the ‘rejected recyclable waste has (increased by) 84% in England since 2011’ (BBC, 2016). The effects
of this are adverse as a single non-recyclable in a bin can result in the whole recycling bin contents
being rejected due to contamination. The project tackles this problem by automatically and
accurately sorting items into the correct material category.

Therefore, the project would aim to create a feasible and sustainable solution that encourages
recycling among students, increases the amount recycling without contamination and make the
waste sorting process more efficient.

1 Obtained from the questionnaire carried out among students, for full Questionnaire see Appendix 1
2 Obtained from the questionnaire carried out among students, for full Questionnaire see Appendix 1

6

3. Design Criteria

3.1 Problem Research

In order to better understand the requirements of the problem, background research was done by

contacting Imperial Estate Facilities Customer Service Centre. The information obtained is that

the self-sorting items would be highly beneficial as this would accelerate the process of sending the

materials to recycling by removing the large-scale sorting stage done in material recovery facilities.

This would cut costs and eliminate manpower needed as most of sorting is done manually in these

facilities making the whole process more economic and less wasteful.

3.2 Design Specifications

The design criteria have been kept very similar to the model outlined earlier in the interim report.
The machine divides four categories of items (plastic, paper/carton, cans and general) and will be
placed indoors being able to store one day’s worth recyclable storage.

The table below outlines the design criteria already set in the Interim Report. The words in bold
specify the criteria that have changed since the Interim Report and the rationale for these changes
are specified below the following table.

Category Criteria Requirement

Manufacturing

Size
Has 4 standard sized compartments of 220 l volume each - reduced to
120l for transport purposes.

Material Suitable for indoor operation only

Cost Each unit made within £100 - estimated cost £120

Performance

Speed Able to complete each sorting within 30 seconds – 40s

Storage
Capability

Able to store one day’s worth of recyclables in campuses and be cleared
daily

Reliability
Able to sort 5 distinct items common in campuses into 4 categories -
increased number of items that can be sorted

Accuracy
Able to distinguish common items purchased in campus at least 80% of
the time

Operational
Requirements

Power
Requirements

Low power consumption. Have standby (idle) mode to save power when
not in use. - 4 AA batteries

Maintenance Able to run smoothly with servicing done twice a year

Service Life Able to be in use for a minimum of 5 years

Safety
Requirements

Misuse/Abuse
Tray to place recyclables closes after every interaction preventing access
into the compartments - not available for presentation

The capacity of the bins was reduced to half from 240L to 120L for transportation purposes during

the demonstration. The estimated cost has increased to £120 for higher reliability and all of the

costs are outlined in Section 5 of this report.

7

The overall time of operation has increased and each operation will take a total of 40 seconds: 15

seconds to take the picture and process the image, 5 seconds for the tray to go to the correct

position and come back, 10 seconds to tilt, 5 seconds of waiting and 10 seconds to scan the QR code.

Regarding the power requirements, the motors will be supplied by 4 AA batteries and connected and

disconnected by a switch instead of standby (idle) power saving mode. Finally, due to the improved

image recognition technique, the machine will now be able to sort more than 5 items for the

demonstration.

4. Design Consideration and Implementation

4.1 Design Overview

For the proper functioning of the self-sorting recycling machine, a combination of software and

hardware is required to correctly classify four different categories: plastic, paper/carton, cans and

general waste. The software part consists of a mobile app and the image recognition software. The

app is available for both Android and iOS systems enables the users to interact with the machine and

collect points. The hardware section is represented by the automated machine itself, in which the

item to be sorted is placed. Each item is classified into the correct material category by using image

recognition and is then sorted to the correct bin using a rotating tray operated by two servo motors.

The automated sorting means that the waste will ready to immediately enter the recycling stage

once it is collected from the machine.

4.2 Rotating Mechanism

In order to fulfil the design criteria and user needs the design that was devised is the following: four

bins are placed in a circular shape for each of the four item categories (plastic/carton, cans, paper

and general) looking similar to the picture shown below with three categories.

The sorting tray is centred above the four bins on a rod and is rotated

around this centre so that it can face each of the four bins as necessary.

Once the tray reaches the desired position it is tilted and the item to be

sorted is dropped into the correct bin.

This structure will be covered by an exterior in order to protect the sorting

tray and prevent the users of having the access to the bins. An opening will

be made where the items to be sorted are placed by users and a QR scanner

will be placed next to it to provide user interaction with the machine.
Figure 1: Model of the orientation of bins

The whole sorting process can be split into three technical parts: construction of the mechanical

motor mechanism to rotate and tilt the tray to drop the item into the correct category, developing

image recognition software that identifies the item and building an app that enables user interaction

with the machine. The following sections outline the technical analysis, implementation and

rationale for decisions for each of the three parts.

8

4.3 Motor Configuration

4.3.1 Servo Motor

Servo motor is a motor that allows the precise control of the position and angle of rotation. The

inside of a servo motor consists of a DC motor, potentiometer and a control circuit. When the motor

rotates the resistance of the potentiometer changes which allows the control circuit to determine

the current position relative to the rest position, how much movement there is and in which

direction (Reed, 2015).

The speed of rotation of a servo motor depends on its position as it is proportional to the difference

between its current and desired position. Therefore, when the motor is far away from the desired

position it will rotate fast and as it approaches the desired position it will slow down.

The motor has three connections: ground, power and a signal wire. It is controlled by sending an

input which determines the angle of rotation through the signal wire. For example, if the input is

given to be 90 the motor will rotate by this amount and then stop. However, a servo motor can

usually only turn by 90° in either direction making the total angle of rotation 180° which when

rotation of 360° is needed is a big disadvantage of this type of motor.

4.3.2 Servo Motor with Continuous Rotation

This is a special type of servo motor that does not have a limit on the range of motion and is able to

rotate 360° without any restrictions (Carnegie Mellon, 2015). Furthermore, a servo motor with

continuous rotation does not have the feedback control that allows for the position of the motor to

be determined. Instead the motor is always defined to be at zero degrees. Because of this, the input

signal no longer determines which position the motor should go to as it rotates indefinitely until it is

stopped, but instead determines the speed of the rotation (Pololu, 2011).

For example, the input of 45 means the motor will rotate slower than for the input of 60 because the

speed is determined by the difference between the desired and current position and in servo motor

with continuous rotation the current position is always seen to be at zero. This is an advantage of

this type of the motor as the speed of rotation can be easily controlled. However, its position can no

longer be controlled and the motor rotates continuously once it is given an input.

4.3.3 Rotation of the tray

For the rotation of the tray, the servo motor with continuous rotation is used. This is because the

normal servo motor does not have the flexibility to rotate 360 which is important for our design.

The rest position of the tray is defined to be above the plastic bin as shown in the diagram below.

The tray only needs to rotate by either 90 left or right from the

rest position to reach the paper/carton and can bins and by 180

for the general bin. As the motor will rotate continuously once the

input is provided the time needed to rotate by 90 or 180 was

measured manually and is found to be 2.15s and 4.30s

respectively in the clockwise direction and 2.6s and 5.2s in the

anticlockwise direction.

Figure 2: Top view of the tray above bins

9

In order to program the motor so that it can stop and operate correctly, once the time needed for

the motor to reach the desired position has elapsed the motor is given an instruction to stop

rotating. Following this the tray is tilted and motor is given an instruction to return to the original

position in the same way just in opposite direction.

4.3.4 Tilting of the tray

As the tray is fixed on a rod with the servo motor with continuous rotation placed inside of it as

shown in the pictures below.

Figure 3: Picture of the 3D printed rod with the servo motor placed inside shown in Top view, Front view and Side view

Figure 4: left – picture of the rod with motor and the tray separated,

right – picture of the tray fixed on the rod

The servo motor that tilts the tray could not be fixed directly to the tray as this would prevent it

from rotating. A solution that was devised was to break the rod that holds the tray into two pieces

making the top piece holding the tray tilt and leaving the bottom one fixed as shown in the picture

below. The two pieces are joined together with a servo motor which tilts the top rod along with the

tray.

10

Figure 5: Left – picture of the tray with two rods with all the motors; Right

– the top rod that was created in Autodesk and 3D printed

To implement the tilting, a normal servo motor is chosen as there is no need for 360 angle of

rotation as the rod holding the tray only needs to tilt by 30 - 40. As this angle is not big, the speed

at which the tilting is done will not be too fast as the speed is dependent on the distance between

the current and desired position as explained earlier. Furthermore, the input to the servo motor is

the angle by which the rod needs to tilt which makes controlling of this type of motor easier. The

part of the code that tilts the tray is shown below3:

void tilt() {
 myservo.write(120); // turn the motor clockwise, input 120 defines the 30 tilting angle
 delay(2000); // wait in this position for 2s
 myservo.write(90); // return the tray to the original position, input 90 defines the 30

tilting angle in the anticlockwise direction
}

The initial rest position of the motor is 90.

Giving any value between 90 and 180 as

input will turn the motor in the clockwise

direction and for any value between 0 and

90 the motor will turn in the anticlockwise

direction.

Figure 6: Servo motor position angles (Future Electronics, 2016)

3 See Appendix 2 for the full code

11

4.3.5 Circuit Diagram

Figure 7: Circuit Diagram, first version

Potential Divider and Switches Configuration

Ideally, the output of the image recognition software should be directly inputted to the AtTiny85.

However, as this is out of the scope of the project, once the software identifies the category of the

item to be sorted this information is fed into the circuit manually using switches.

In order to do this a mapping between the category type and different voltage values is produced. As

the power supply for the circuit are four 1.5V batteries connected in series with a total voltage of 6V

the mapping that is done for the four different categories is as follows:

1. Plastic → 1.5V

2. Paper/Carton → 3V

3. Cans → 4.5V

4. General → 6V

This was first implemented by using potential dividers as shown in the circuit diagram above in order
to obtain the desired voltage values from the 6V supply. However, after testing this model a short
circuit was detected when turning the switches on and off. This was due to the direct connection
from the positive voltage supply of the battery to GND when the switch is closed which led to the
malfunctioning of the circuit.

Hence a new circuit was designed following a wired remote control circuitry patterns. Here, four
resistors in parallel with four switches are connected in series forming a potential divider with a
single 5kΩ resistor as shown in the circuit diagram below. This configuration gives 4 different input
voltages controlled by switches with no risk of creating a short-circuit.

12

Figure 8: Circuit Diagram, final version

Another benefit of this circuit is a possibility to reduce the number of switches from 4 to 2 following
this Boolean diagram as either switch can be on or off giving four possible voltage values:

Switch A off off on on

Switch B off on off on

Vout min ~ 1 V ~ 2V ~ 4V max ~5V

However, for testing and demonstration purposes the four switches will be kept to represent more
clearly each item category: plastic, cans, paper/carton or general.

As the circuit will be controlled manually during the demonstration, when there is no item to be
sorted all of the switches should be closed. The resistor values are chosen to give the following
voltage values to the AtTiny85 depending on the item category:

1. Plastic → S4 is open → 1V

2. Paper/Carton → S3 is open → 2V

3. Cans → S2 is open → 3V

4. General → S1 is open → 5V

Once the category of the item is obtained as the output from the image recognition, the appropriate

switch is opened so that the potential divider is created with R5 and voltage value representing the

specific category is sent to the input of AtTiny85.

13

For example, it the item is detected to be carton the left half of the

circuit will have the configuration shown on the left. The switch S3 is

open so that resistor R3 forms a potential divider with R5 creating a

2V signal that is sent to the input of the AtTiny85. As all other

switches are closed all other resistors are shorted out so they do not

affect the circuit in any way.

Figure 9: Left half of the circuit for carton input

AtTiny85 Microcontroller Operation

The AtTiny85 receives voltage value as analogue input which represents a specific item category.

Since the potential dividers are used to generate four different input values and because the

batteries will not be able to produce 6V due to usage over time, a small percentage of inaccuracy is

expected. In order to handle this the code will deal with the issue as follows:

if ((voltage > 1.5) && (voltage < 2.5)) { // anything within the 2V range is classified as carton
 carton();
}

On the output side, pins 5 and 6 of the AtTiny85 are used to control the servo motor with

continuous rotation and the normal servo motor respectively. AtTiny85 will process the input

voltage and depending on its value will send signals to the two motors in order to rotate the tray by

a specific amount, tilt it and finally return it to the original position.

Firstly, the motor with continuous rotation is energised and rotated so that it faces the correct bin.

During this time the servo motor used for tilting of tray is at rest. Once correct position is reached

the rotating motor stops and the control is passed to the motor which tilts the tray so that the item

is dropped into the correct bin. When this action is completed the motor which tilts the tray is

turned off and the motor that rotates the tray is activated to return the tray to the starting position.

For example, if the image recognition software identifies the item as carton the appropriate switch is

closed manually. AtTiny85 receives the value of 2V as analogue input and makes the tray rotate 90

degrees so that the tray faces the bin containing paper/carton items. A fraction of the code that

shows how the motor is controlled when the item to be sorted is carton is shown below4:

void carton() {
 myservo.write(88.5); // turn the motor clockwise, input 88.5 defines the speed of rotation
 delay(2150); // keep rotating for 2.15s until the carton bin is reached
 myservo.write(91); // stop the motor at this position, input 91 defines zero motion
 delay(5000); // for 5 sec here until the tray is tilted to drop the item
 myservo.write(99); // turn anticlockwise to original position, input 99 defines the speed
 delay(2600); // keep rotating for 2.6s until the starting position is reached
 myservo.write(91); // stop the motor at the starting position and wait for next action
}

4 See Appendix 2 for the full code

14

4.4 Image Recognition

4.4.1 Image Recognition Design Selection

The project requires a select set of common recyclables to be classified into the four categories

through instance-level recognition (Vedaldi & Zisserman, 2014). In the interim report, several

methods of identification were discussed to distinguish objects placed in the tray through

photographs taken. Since they can be placed in any direction by the students, a method that is

immune to the object orientation is crucial. Moreover, image recognition programs also require

implementation of machine learning that increases accuracy by learning from previous results.

Methods evaluated are as follows:

1) Scale-Invariant Feature Transform (SIFT)

SIFT is an algorithm that is invariant to rotations, translations and scaling transformations of images
(Scholarpedia, 2012). Therefore, the item can be recognised even if there are differences in position
or lighting (Vedaldi & Zisserman, 2014).

In order to better understand this process, Mr Juil Sock, a PhD student specialising in image
processing was consulted with the recommendation of the group’s supervisor. It was discussed that
a database would be created with images of each object from different angles with a common label,
along with information on their SIFT features.

Figure 10: Images of objects in different orientations

As seen in the figure above, images of objects in different orientations and lightings can be taken

and made to be associated with the same label created such as water bottles being linked to

“Plastic”. When a new image of interest is inputted, it is compared against the existing database to

retrieve the final label. By using machine learning, the algorithm can learn from the data and results

input before to improve the performance of the following results. As the database increases, the

accuracy of the system is also improved enabling many different objects to be placed from various

angles.

2) Google Cloud Vision API

Google Cloud Vision API is a computer vision API from the Google Cloud Platform that can be
integrated in websites and applications to obtain information on the content of an image. The Vision
API can detect faces, logos, landmarks, image attributes etc. Vision API is very powerful and has
plenty of functions - the only function of interest to this project is Label Detection. Labels are the
objects/categories that the API can identify in the image.

15

Figure 11: Results from Google Cloud Vision Interface

The figure above depicts the label created when an image is fed into the Google demonstration

interface that aims to only illustrate how the API works. To use this function, the suitable Vision API

must be added into the code programmed by the user in Python or other programming languages.

The programme then imports the Vision library to obtain a list of labels associated with the input

image. Deep machine learning through the enormous Google database allows for reliable labelling.

The API also scores the level of certainty for each label (Google-Cloud, 2014). While the input image

to the Vision API can be anything, for the use in this project it is a single object against a plain black

background.

Design Selection
SIFT algorithm focuses on areas of interest with intricate details such as designs on building to
compare between images. Thus, it works more accurately for images of ‘high texture’ i.e. those with
more variety in colours, designs and details. However, many types of recyclables may not have such
distinguishable features making SIFT more ineffective.

On the other hand, the Google Cloud Vision API has a higher level of accuracy compared to the SIFT
algorithm that are written from scratch from the group as it harnessed the Google’s existing large
database. One of the main aims of SortBot is to prevent the contamination of the recyclables, which
is why its image recognition software would be better implemented by importing the Google Cloud
Vision API. Google Cloud Vision API was also chosen over other computer vision APIs for its ease of
use, the availability of a good open source code and adaptability to different programming
environments.

4.4.2 Image Recognition Concept Development

Test Procedure

To formulate a suitable algorithm for the image detection process, the Vision API had to be tested

with the target objects. A list of common items that are recycled by the students in the Imperial

College London main campus was obtained through a campus-wide survey.

Images of these items were taken against a black background, keeping other elements such as angle

and lighting constant to simulate the photographs that would be taken internally by SortBot. These

were the inputs to the image recognition programme to obtain the labels and their corresponding

scores.

16

Test Results

No. Test object Label Score Category

1 Paper

handwriting 0.8206787705

Paper
art 0.666133523

document 0.6128236055

writing 0.610511899

2 Newspaper

text 0.940867424

Paper advertising 0.6218293309

document 0.5373576283

3 Water bottle

drink 0.8869991899

Plastic
alcoholic beverage 0.7854443789

distilled beverage 0.676841557

bottle 0.615100503

4 Innocent juice bottle
drink 0.7516778708

Plastic
bottle 0.6988299489

5 Coca-Cola can

red 0.9574187398

Can
coca cola 0.946059525

drink 0.9212352037

carbonated soft drinks 0.8557853699

6 Energy drink can
drink 0.7943568826

Can
energy drink 0.7339280248

7 Dirty paper plate

white 0.9376140237

Contaminated
porcelain 0.7050687075

ceramic 0.6711545587

food 0.6440527439

The data obtained above would later be interpreted and analysed to formulate the algorithm that

sorts specifically chosen labels to recycling categories. All other labels that do not fit in any of the

categories are ignored. The algorithm is first refined to sort only these select items correctly and

reliably and the database of items to be sorted can be expanded in the future.

4.4.3 Image Recognition Design Challenges

1) Contamination
One of the key problems with current recycling methods was identified as contamination; a single
product with food, for example, can result in the disposal of the entire collection of recyclables.
Thus, it is crucial that SortBot does not include such objects into the recyclable categories
incorrectly. A ‘general’ category is present that will encapsulate all objects that do not contain the
identified keywords.

17

Moreover, an additional checking element is added into the algorithm. If the Vision API identifies
words associated with contamination such as ‘food’, the object of interest will be automatically
sorted into ‘general’. Thus paper plates, even though recyclable themselves, are stained with food
and can be sieved out.

The opportunity cost of implementing this checking process is that certain uncontaminated objects
will be wrongly sorted into ‘general’. For example, a clean, unused paper plate could still have that
label due to its association with ‘food’. However, the cost of contamination outweigh the cost of
misplacing some of the recyclables. Therefore, this checking element is also implemented ensuring
the machine is even more competent in solving the problem identified.

2) Overlapping labels
A generic label detected by the Vision API can correspond to multiple categories. For example, the
label 'coca cola' can correspond to both the soft drink bottle and the can, resulting in an overlap of
categories.

To construct a more reliable system, such brand names and generic labels have to be ignored. Even
if an unsuitable generic keyword (e.g. coca cola) is one of the labels, the programme will iterate
through the list of labels provided by the Vision API to find the specific ones (e.g. bottle, plastic) that
SortBot is able to categorise with confidence - these categories are then stored in another list.

A further problem that could occur is when the programme detects labels that are sorted into
conflicting categories. For example, a plastic bottle is labelled as ‘bottle’, ‘plastic’ and ‘glass’. The
resulting list of categories is ‘plastic’, ‘plastic’ and ‘glass’ (note that SortBot currently does not
include a bin for glass, so actual glass items should go into ‘general’). The algorithm is refined to find
the category that occurs the most frequently to solve this problem, further strengthening the need
to store the possible categories in a list.

3) Inability to identify some items
As a direct cost to using the solution in 6.3.3.b, the Vision API has been shown to frequently failing in
identifying some items in a way that SortBot can categorise them meaningfully.

The most inaccurate labels the Vision API has given to a Coca-Cola can are ‘art’, ‘wheel’, ‘tire’ or just
‘red’. At best, the API is able to label it with ‘coca cola’, ‘soft drink’, ‘carbonated soft drinks’ and
‘drink’. As stated in 6.3.3.b, such generic labels and brand names must be ignored since it can refer
to both the plastic bottle and the can.

SortBot will instead implement a conditional statement to properly sort these cans. When the
programme detects that an item is labelled as ‘soft drink’, it will check if it is also labelled as ‘bottle’.
The presence of the label ‘bottle’ implies that the item is a beverage bottle, while its absence implies
that it is a canned drink. In summary, for SortBot to sort cans, it analyses generic labels such as ‘soft
drink’ but on stricter conditions by checking the rest of the list of labels too.

18

4.4.4 Program Implementation

Figure 12: Illustration of the program implementation

The overall programme implementation is illustrated in the figure above showing the image being

input and the final category number is obtained as the output. The data obtained from testing and

experimentation earlier was used to create a table of labels to be associated with the categories as

seen below:

Category Plastic Paper Can Contamination

Labels Plastic
Bottle

Paper
White
Writing
Document
Calligraphy
Poster
Book

Can
Drink (on the condition that the list does not
include ‘bottle’ energy drink)

Food
Coffee
Plate
Dishware
Tableware
Saucer
Cup

Based on this, the complete programme is written in Python and is built upon an open source code

available (Google Cloud, 2016). It accepts input images named in the format ‘inputx.jpg’ (where x is

an integer) and stored in the folder named ‘resources’ in the same directory of the programme. To

illustrate the entire structure of the programme written, the following pseudo code has been

included:

As seen on the left, the code iterates through the

list to find each of the labels stated In Table X,

and creates a new list placing them into their

respective categories. At the same time, it is also

checking for labels that indicate a possibility of

the item being contaminated by food by using a

Boolean variable. If this is true, it takes priority

regardless of whether labels indicating

recyclables are also found or not and this is

automatically sorted into ‘General’. Otherwise,

for items that can be recycled, the programme

will find the category with the most occurrences

by importing the statistics library and applying

the mode function - this is the category that the

item will be physically sent to.

19

Some items, such as non-recyclables, will not be
categorised at all. The programme will check for
such situations and move on the next part of the
code if needed. The programme labels all
contaminated items and uncategorised items as
‘general’. Each category is assigned a number,
which is the information being sent to the motor
and the accompanying mobile app according to
the table on the left.

4.5 The Mobile App

4.5.1 Rationale for Decisions

The app directly connects the user and the machine as it takes the information from the image
recognition as input and converts it into points for the user that can be redeemed. Each user account
will have a personal QR code that can be scanned after every operation to accumulate points. The
SortBot app will allow the user to keep track of the points achieved as well as the items recycled.

The app will be built in iOS environment instead of Android and hence, the app will be coded in Swift
instead of Java. In the first instance, the platform of Ruby on rails was considered due to its
compatibility with both Android and iOS and easy access to database. This would however consist of
a web app with limited functionalities which design is shown below:

Figure 13: Top – Web App clearly showing limitations, Bottom – Screenshot from the iPhone simulator in Xcode

Category Category number

General 0

Paper 1

Plastic 2

Can 3

20

Hence, the Xcode option was selected to create a proper mobile app with a wider design option as

shown above. After logging into the user account, the personal QR code will appear ready to be

scanned in the SortBot machine compartment:

The main functionality of the app is providing each user with a unique QR code, which the user scans

before recycling each item and receives points based on the material of the recycled item.

Therefore, the main screen for a logged-in user consists of his or her QR code and links to the page

displaying their points and their activity. The latter consists of all their previous transactions,

displaying the item recycled, its material, the number of points received and the date of the

transaction. Due to time constraints, we have not considered the QR scanning technology in much

detail. However, given the rapidly increasing popularity of it, we believe that this aspect of our

project would not be overly difficult.
Ruby on rails will be used as a server, the back-end of the app that handles the persistent data of the

mobile app, storing the users and its corresponding passwords.

Points Allocation
The allocation of points is based on the table below:

Number Meaning Points

1 Plastic 3

2 Paper 1

3 Cans 3

4 General 0

The app will include a section showing the sum of all points earned based of the items put in the
machine and another section with the history of all transactions.

For demonstration purposes, instead of scanning the QR code, the user will be asked to submit one
number 1, 2, 3 or 4 which makes it easier to connect the machine to the image recognition output.
Later phases of the project development will have as an input a file contained in the QR code
representing the item that has been inserted and its corresponding material. To sum up, the
SortBot app will read the input file from the QR code which is already categorised by the image
recognition function in the following way:

 Bottled water - plastic 2 points
 Coca-Cola can - can 3 points
 Felix newspaper - carton/paper 1 point

4.6 Rationale for Decisions
The overall function of SortBot was split into three technical sections: developing the image

recognition software, constructing the rotating and tilting mechanism by controlling the motors and

building the app. By connecting all of the technical sections together a fully working system can be

obtained. Given the limited amount of time, automating all of the processes is out of the scope of

this project. Instead, each technical part will be fully operating on its own and output of each stage

will be fed into the next one manually.

21

5. Industrial Design and Manufacturing Considerations

In order to estimate the cost of designing the final product all of the components that were bought

so far and their costs are included in the table below:

Component Quantity Price per Unit (£)

Arduino T010051 Digital Continuous Servo Module (360°) 2 11.25

Miniature 240V SPDT Vertical PCB Slid 4 0.39

Battery AA Alkaline 1.5V (Energiser) 4 0.24

RVFM Foolscap Letter Tray - Black 1 2.07

ST L7805CV +5V 1A Voltage Regulator 1 0.28

Modelcraft RS 2 JR BMS-410C Plastic Gear JR Standard
Analogue Servo

1 5.12

Adafruit 1967 Mini Pan-Tilt Servo Controlled Brackets 1 16.18

Atmel ATTINY85-20PU, 8bit AVR Microcontroller, 20MHz, 8
kB, 512 B Flash, 8-Pin PDIP

1 1.64

3D printed rod of dimensions 5x10x15 120g 1 3.60

 Total Cost: 53.91

This only includes the cost of building the mechanical system of the machine which includes motors

for rotation and tilting, rods for the support and mounting and the sorting tray. The list above also

includes the cost of building the circuit with all the components that control the operation of the

motors.

The items that still need to be ordered for the machine to be complete are the QR scanner that

enables the user to interact with the machine through the app and a camera that needs to be placed

above the tray in order to take images of the items to be sorted. After looking through the possible

options the price of these items are as follows:

 QR scanner - £10.99, price taken from (Amazon, 2016)

 Camera - £24, price taken from (eBay, 2016)

To build and manufacture a final machine further costs need to be considered such as constructing

the cover for the exterior of the machine that protects the sorting mechanism as well as the four bin

compartments. The estimated cost for this is around £30 as the materials needed to do this are not

expensive.

At the current stage of the project, the Vision API is being used at a

rate of roughly 50 requests per day, for one week - corresponding

to an estimation of 350 requests. The API is free to use up until

1000 requests per month (Google Cloud, 2014). When SortBots are

ready to be deployed to university campuses, it would cost £1.50

per month to continue using the API beyond 1000 requests per

month. Finally, summing up all the costs of manufacturing the

overall estimated cost for the entire machine is £120.

Figure 14: 3D Model of the entire SortBot Machine

22

6. Project Management

The work was equally split between the seven group members. Regular meetings were held both to

keep track of the progress and to discuss design choices and new ideas.

The project was split into four main areas so that each student could give his/her own contribution

to the development of the final design, according to one’s interests and skills. The individual

allocations are shown in the table below.

Task Group Members

Image Recognition
Abhinaya Mathivanan

Sze Tyng Lee

Sorting Mechanism
Wendy Lu Chen
Jacopo Carrani

Katarina Boskovic

App Design Octavian Rosu

Website Design Guo Liang Liew

The Gantt chart shown below was constructed in order to have an estimate on how much time

should have been dedicated to the different stages of the project and to always be aware of the

deadlines the group had to meet.

Figure 15: Gantt Chart

23

7. Future Work

The final aim of the project, which could not be achieved due to the time constraint, would have

been to fully automate the sorting process by integrating the independent systems into one holistic

machine. As of now, the output of the image recognition part must be manually fed to the sorting

mechanism, but after further work and refinement, there would be no need for human interaction

between stages. Also, we aim to incorporate SortBot into university campuses with an interactive

user interface embedded and an improved aesthetic aspect.

Moreover, our ultimate goal is to create a self-sustainable system where the profits from selling the

recyclables to recycling centres could be used for maintenance and upgrade of SortBot. Introducing

a low power mode in the operating modes of SortBot can help save energy usage and thus reduce

the cost of operation of SortBot. We will coordinate liaison with external businesses to build an

attractive rewarding scheme. This could be achieved by partnering with a payment app like YOYO

Wallet and businesses targeting students such as online retailers and food delivery companies.

The technology can also be improved to be able to detect multiple objects at the same time, and to

accommodate more categories of recyclables. In the long term, the SortBot technology can be

promoted as a possible approach for wider applications such as community councils and mobile

waste trucks.

By harnessing more advanced image recognition technologies, this recycling method can be

implemented to wider applications. For example, Google has recently announced of algorithms that

detect multiple objects in a single image. With this, SortBot can be adapted to sort larger amount of

waste in one go such as on waste management trucks (Collins, 2014).

8. Conclusion

This project has proposed a solution to improve the state of waste management in universities

making recycling more appealing and effortless. The end goal is to increases recycling rates at

campuses and reduce wastage of resources by automating the process completely. The technical

solution designed is SortBot, a holistic system of a sorting machine and mobile application that

rewards recycling.

After research and experimentation, SortBot was designed and made to have complementing

software and hardware to accomplish the task. The image recognition aspect was produced with an

external API and an algorithm that interprets the results obtained. The rotating mechanism was built

completely with servo motors and 3D printed compartments that function reliably with appropriate

coding. The independent parts work smoothly and can be integrated to form a full-functioning

machine given more time. This technology can be improved and implemented to revolutionise the

way recycling is done.

24

References
Amazon. (2016). Amazon. Retrieved March 12, 2017, from OneBird M3 2d Qr Wired

Handheld USB Barcode Scanner Reader Support Mobile Payment Computer Screen

Scanner with a Bottle Opener: https://www.amazon.co.uk/OneBird-M3-Handheld-

Barcode-Computer/dp/B016EI7Z2W/ref=sr_1_55?ie=UTF8&qid=1489340836&sr=8-

55&keywords=qr+barcode+scanner

BBC. (2016, August 23). Rejected recyclable waste up 84% in England since 2011. Retrieved

from BBC: http://www.bbc.co.uk/news/uk-37159581

Carnegie Mellon. (2015). Continuous Servo. Retrieved March 03, 2017, from Carnegie

Mellon Robotics Academy:

http://www.education.rec.ri.cmu.edu/content/electronics/boe/robot_motion/1.htm

l

Collins, K. (2014, September 08). Google's Imaging Tech will Advance Robots and Research.

Retrieved March 09, 2017, from Wired Technology:

http://www.wired.co.uk/article/google-research-object-recognition

eBay. (2016). eBay. Retrieved March 12, 2017, from HD 1080p Video Camera DV similar

gopr or o SJ4000 Sports waterproof: http://www.ebay.co.uk/itm/HD-1080p-Video-

Camera-DV-similar-gopr-or-o-SJ4000-Sports-

waterproof/131896358605?_trksid=p2141725.c100338.m3726&_trkparms=aid%3D

222007%26algo%3DSIC.MBE%26ao%3D1%26asc%3D20150313114020%26meid%3D

24ff3ee149c84920810036f323ce7fd2%26p

Future Electronics. (2016). Servo Motors Control and Arduino. Retrieved March 10, 2017,

from Future Electronics: http://www.inmoov.fr/wp-

content/uploads/2015/02/Introduction-to-Servo-Motors-Arduino.pdf

Google Cloud. (2014). Pricing. Retrieved from Google Cloud Platform:

https://cloud.google.com/vision/docs/pricing

Google Cloud. (2014). Usage Limits. Retrieved March 03, 2017, from Google Cloud Platform:

https://cloud.google.com/vision/docs/limits

Google Cloud. (2016). Google Cloud Vision API Python Samples. Retrieved from Github:

https://github.com/GoogleCloudPlatform/python-docs-

samples/tree/master/vision/cloud-client

Google Could. (2014). Authentication. Retrieved March 03, 2017, from Google Cloud

Platform: https://googlecloudplatform.github.io/google-cloud-

python/stable/google-cloud-auth.html

Google-Cloud. (2014). Using the Vision API. Retrieved March 03, 2017, from Google Cloud

Platform: (https://googlecloudplatform.github.io/google-cloud-python/stable/vision-

usage.html

25

Pololu. (2011, July 26). Continuous-rotation servos and multi-turn servos. Retrieved March

03, 2017, from Pololu: https://www.pololu.com/blog/24/continuous-rotation-

servos-and-multi-turn-servos

Reed, F. (2015). How Servo Motors Work. Retrieved March 03, 2017, from Jameco:

http://www.jameco.com/jameco/workshop/howitworks/how-servo-motors-

work.html

Scholarpedia. (2012). Scale Invariant Feature Transform. Retrieved from Scholarpedia:

http://www.scholarpedia.org/article/Scale_Invariant_Feature_Transform

SITA UK. (2016, April 22). University recycling survey gives insight into student recycling

behaviours. Retrieved from SITA UK: http://www.sita.co.uk/news-and-views/press-

releases/university-recycling-survey-gives-insight-into

The Guardian. (2016, December 15). Recycling rates in England drop for first time. Retrieved

from The Guardian:

https://www.theguardian.com/environment/2016/dec/15/recycling-rates-england-

drop-first-time

Vedaldi, A., & Zisserman, A. (2014). Recognition of object instances practical. Retrieved

March 7, 2017, from Oxford Visual Geometry Group:

http://www.robots.ox.ac.uk/~vgg/practicals/instance-recognition/index.html

26

Appendix

Appendix 1 – Results of the primary research carried out among students

27

28

Appendix 2 – Code for Controlling Motors

29

Appendix 3 – Image Recognition Code
def
sortbot():

 import io
 import os

 # Imports the Google Cloud client library
 from google.cloud import vision
 from statistics import mode

 # Instantiates a client
 vision_client = vision.Client()

 # Path to image file (obtain from user in the cmd prompt)
 imgnr = input("Which image? ")
 imgnr_s = str(imgnr)
 inputimg = "resources/input" + imgnr_s + ".jpg"

 # The name of the image file to annotate
 file_name = os.path.join(
 os.path.dirname(__file__),
 inputimg)

 # Loads the image into memory
 with io.open(file_name, 'rb') as image_file:
 content = image_file.read()
 image = vision_client.image(
 content=content)

 # Performs label detection on the image file
 # Puts all the labels in a list
 labels = image.detect_labels()

 # Initialises variables involved in categorising the trash
 recycle_l = ["unsorted"]
 recycle = "unsorted"
 category = 0
 tried = False
 containsFood = False

 # Prints all the labels and their probability
 # Creates a new list with all the categories it is able to sort
 print("\nLabels:")
 for label in labels:
 print(("%s %c %s") % (label.description, ':', label.score))
 if "food" in label.description:
 recycle_l.append("dangerous")
 containsFood = True
 elif "coffee" in label.description:
 recycle_l.append("dangerous")
 containsFood = True

 elif "paper" in label.description:

30

 recycle_l.append("paper")

 elif "plastic" in label.description:
 recycle_l.append("plastic")

 elif "can" in label.description:
 recycle_l.append("can")

 elif "bottle" in label.description:
 recycle_l.append("plastic")
 elif (("white" in label.description) and (label.score > 0.9)):
 recycle_l.append("paper")

 # Check if it tried categorising the item at all
 try:
 recycle = recycle_l[1]
 tried = True
 except:
 recycle = "unsorted"
 tried = False

 # Code tried categorising item
 # Find the most frequently occuring category
 if tried == True:
 recycle_l.remove("unsorted")
 recycle = mode(recycle_l)

 print("\nDetected possible categories:")
 for stuff in recycle_l:
 print(stuff)

 if recycle == "paper":
 category = 1
 elif recycle == "plastic":
 category = 2
 elif recycle == "can":
 category = 3

 # Check if it contains food
 if containsFood == True:
 recycle = "unsorted"
 category = 0

 print("\nIt belongs in", recycle)

Programmer can import sortbotv03
This code checks if sortbotv03 is being imported
Or run in the cmd line
if __name__ == '__main__':
 sortbot()

31

Appendix 4 – Authentication of Google Cloud Vision API

To be able to use Vision API, proper authentication and set-up has to be done during the first
deployment of the programme on the specific machine (Google Could, 2014). There are two ways of
authentication that SortBot can use:

a. Testing the code locally (e.g. as the developer of SortBot)

During the development stage of the programme, authentication is done by running the following
code in the Google Cloud SDK: gcloud auth application-default login. The developer will be directed to a
Google log in page. A Google account with proper Vision API permissions is required.

b. Deploying the code elsewhere (e.g. as the client of SortBot)

The machine needs a Google Developers Service Account key file, which can be created from the API
console on the Google Cloud Platform. This key file needs to be stored securely as it is the only copy
of this key. The file can be used by running the following code (in this instance, the file is stored in
the same directory as Python, else add the path to the file):
GOOGLE_APPLICATION_CREDENTIALS='./servicekeyfilename.json'

For the API to run, the machine is required to install the Google Cloud Vision module, which is done
after it has been authenticated properly.

Limitations of Google Cloud Vision API (Google Cloud, 2014)

The maximum image file the API is able to receive is 4MB, which is not a problem to SortBot. The
experiment was run with a Samsung Galaxy S6 phone camera, and the resulting images are all
around 500KB in size. This image size has been proven sufficient in successful labeling by the API, so
it is also unnecessary to implement an expensive camera in SortBot.

Additionally, there is a limit to the number of images the API can receive per second - limiting the
rate of sorting the items. The Vision API limit is 8 images per second for a given project, which will
not be a big hindrance to the deployment of SortBot given that there already is a physical limit in its
physical sorting of items using the servo motors.

32

Appendix 5 – An Example Usage of Image Recognition Software

Image taken using a phone camera:

Figure: Input image, with file name input2.jpq

Figure: Output Terminal

